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Abstract

The increasing interest in Virtual Reality (VR) as a tool for neuroscientific research contrasts

with the current lack of established toolboxes and standards. In several recent studies,

game engines like Unity or Unreal Engine were used. It remains to be tested whether these

software packages provide sufficiently precise and accurate stimulus timing and time mea-

surements that allow inferring ongoing mental and neural processes. We here investigated

the precision and accuracy of the timing mechanisms of Unreal Engine 4 and SteamVR in

combination with the HTC Vive VR system. In a first experiment, objective external mea-

sures revealed that stimulus durations were highly accurate. In contrast, in a second experi-

ment, the assessment of the precision of built-in timing procedures revealed highly variable

reaction time measurements and inaccurate determination of stimulus onsets. Hence, we

developed a new software-based method that allows precise and accurate reaction time

measurements with Unreal Engine and SteamVR. Instead of using the standard timing pro-

cedures implemented within Unreal Engine, time acquisition was outsourced to a back-

ground application. Timing benchmarks revealed that the newly developed method allows

reaction time measurements with a precision and accuracy in the millisecond range. Overall,

the present results indicate that the HTC Vive together with Unreal Engine and SteamVR

can achieve high levels of precision and accuracy both concerning stimulus duration and

critical time measurements. The latter can be achieved using a newly developed routine that

allows not only accurate reaction time measures but also provides precise timing parame-

ters that can be used in combination with time-sensitive functional measures such as

electroencephalography (EEG) or transcranial magnetic stimulation (TMS).

Introduction

Over the last 20 years, Virtual Reality (VR) has been increasingly recognized as a powerful

research tool in behavioral neuroscience [1,2]. VR enables researchers to study complex and

naturalistic behavior in virtual environments while maintaining a high degree of experimental
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control. VR can help to increase the ecological validity of experiments, i.e., allowing to conduct

experiments in a context that is closer to everyday life, which might lead to more generalizable

and valid explanations regarding cognitive processes. For example, a virtual scenario of a class-

room allows to investigate the attentional capacities of children with ADHD in a realistic but

well-controlled environment [3].

Consumer-grade HMD based VR Systems like Oculus Rift, Valve Index, or HTC Vive are

now making VR available for many researchers and will soon dramatically increase the impact

of VR in the field of cognitive neuroscience. Most likely, VR will have major impact on studies

of visual perception as one of the many advantages that VR offers is its ability to present stimuli

in stereoscopic 3D with a large field of view and with the HMDs entirely covering the visual

field.

Yet, the suitability and reliability of HMDs concerning the measurement of visual cognitive

performance needs to be demonstrated. Recent studies examined whether HMDs, at least in

principle, can be used to reliably investigate visual processing components. The results indi-

cate, that the Oculus Rift Development Kit 2 (DK2) and the HTC Vive allow assessing visual

processing as reliably as CRT displays [4,5].

In addition, due to a lack of established stimulus software for VR experiments, several

recent studies relied on using game engines like Unity [6] or Unreal Engine [7] [e.g., 8, 9].

However, game engines do not contain certain key features that are critical for neuroscientific

experiments. For example, data collection with build-in features, such as response time mea-

surements, are tied to the software’s frame rate, resulting in a sampling rate of 90 Hz when

using an HMD such as Oculus Rift CV1, HTC Vive, or HTC Vive Pro.

Furthermore, modern VR systems use runtime software tools like SteamVR [10] or the

Oculus Rift Software [11], which operate in the so-called “direct mode” that allows direct com-

munication with the HMD hence bypassing the operating system’s typical display communica-

tion pathways. These runtime software tools determine when a new frame will be presented.

They thus have control over the exact timing of stimulus presentation, while at the same time

limiting the accuracy with which stimulus events can be measured, at least when the game

engine’s build-in timing methods are used.

These limitations are well described in the literature [e.g., 12,13] and different approaches

have been proposed to increase the precision and accuracy of time critical measurements in

combination with game engines [e.g., 14–16].

However, to date, no study has systematically quantified the maximum precision and accu-

racy of stimulus timing and time measurements achievable with consumer VR hardware in

combination with game engines.

The goal of the present study was (1) to assess timing errors of the HTC Vive combined

with Unreal Engine 4 (UE4) and SteamVR, and (2) to present a new method that allows to

measure the timing of visual stimulus events and response times with an accuracy and preci-

sion in the millisecond range.

Displays

Experimental neuroscience requires accurate and precise control of stimulus durations and is

hence in need for display techniques with appropriate temporal properties. Display technolo-

gies differ in how accurate stimulus onsets and offsets can be determined. The display technol-

ogy currently used in VR differs from the computer screens often used in experimental

neuroscience. For instance, in contrast to cathode-ray tube (CRT) or liquid crystal displays

(LCD) monitors, many modern HMDs such as Oculus Rift or HTC Vive use organic light-

emitting diode (OLED) displays, and their accuracy remains to be tested. In particular, it is
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essential to determine how accurately stimulus onset times (i.e., the time point when a stimu-

lus appears on the display) can be controlled and how precise and solid stimulus durations can

be defined.

For a long time, CRT monitors were considered the gold-standard for visual stimulus deliv-

ery in experimental neuroscience. In CRT monitors every pixel is updated periodically to gen-

erate an image via an electron beam that scans all pixels in rows from top-left to bottom right,

a process referred to as raster scanning [17]. An important characteristic here is a pixel’s per-

sistence, i.e., the time pixels are illuminated after stimulation by the electron beam. Each pixel

is covered with phosphor. When hit by the electron beam, the phosphor illuminates and

quickly reaches its maximum luminance and then starts to fall off again over a given time. This

time depends on specific characteristics of the given phosphor and ranges from virtually no

persistence (e.g., P15) to several seconds (e.g., P31) [18]. Thus, on a CRT monitor, the entire

image cannot be updated simultaneously and does hence not deliver a continuous luminance

pattern.

LCD monitors are based on a completely different technology. LCD monitors constitute

so-called sample and hold displays in which a steady light source is positioned behind a

layer of liquid crystals. The orientation of the crystals defines a pixel’s luminance. Although

there is no longer an actual electron beam in modern LCDs, and it is no longer necessary to

update displays periodically, it is still common that LCDs are updated in scan like patterns

similar to those in CRT monitors. However, in contrast to CRT monitors, LCD signals do not

decay and remain constant during the display refresh (except for possible backlight modula-

tions) [17].

Since in both LCD and CRT monitors the image is built up line by line from top to bottom,

stimulus onset measurements are synchronized to the vertical blank interval, which is the time

between two display refreshes. Therefore, the stimulus onset measurement is only perfectly

synchronized to the actual stimulus onset, if the stimulus is presented in the leftmost pixel of

the first row. Consequently, the measurement error of the stimulus onset is correlated with the

position of the stimulus on the display [19,20].

In contrast, the HTC Vive uses two low-persistence OLEDs. OLEDs are comprised of a thin

film of organic material that uses an electrical circuit to control the emission of light [21,22].

Unlike LCDs, OLEDs do not rely on time-consuming reorientations of liquid crystals and

have, therefore, faster response times than LCDs. Furthermore, while luminance transition

times of LCDs depend on the luminance of the previous frame, in OLEDs, transition times are

supposed to be independent of the previous frame’s luminance [23]. In general, OLEDs show

precise temporal responses and appear to be suitable for visual neuroscientific research [21]

Hence, the displays used in HMD’s are unique with regard to timing and time measurements

due to particularities of how the display is refreshed.

The whole display gets loaded before it illuminates so that all pixels illuminate simulta-

neously. This type of display is hence often referred to as “global displays” [24]. In particular, a

display refresh of the HTC Vive’s displays starts with a blank period, during which the displays

stay black. The pixels then illuminate for about 2 ms at the end of the screen refresh period.

This is done to minimize visual motion artifacts like smearing and judder. Thus, the updating

behavior of the HTC Vive’s displays should allow accurate measurements of the stimulus

onset, independent of its position.

Stimulus software

For traditional experiments in visual neuroscience, a variety of commercial and open-source

software tools are available that meet strict timing requirements, e.g., Presentation [25],
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PsychoPy [26], or the Psychophysics Toolbox [27]. These software tools are optimized for the

presentation of two-dimensional stimuli and offer no or only limited support for the current

state of the art VR systems. Concerning VR, established toolboxes for neuroscientific experi-

ments are lacking. While a variety of commercial and open-source software is available for the

creation of virtual environments, most of the software tools do not contain features specifically

designed for neuroscientific experiments. One exception is WorldViz Vizard [28], a commer-

cial solution, which allows researchers to create and conduct VR experiments.

However, in several recent studies, game engines like Unity or Unreal Engine were used

and it remains to be tested whether these software packages provide precise and accurate stim-

ulus timing and time measurements that allow inference on mental and neural processes.

For instance, a time-critical presentation of visual stimuli is required for visual masking

paradigms [29] or attentional blink paradigms [30] as well as for almost any experiment

involving visual psychophysics [31]. Similarly, a precise recording of response times is required

for all studies involving mental chronometry, with reaction times as a dependent measure.

Furthermore, a precise recording of events within an experiment is mandatory for the analysis

of all time-sensitive functional measures, such as EEG, TMS, magnetoencephalography

(MEG), or galvanic skin response (GSR), where cognitive and perceptual events are assigned

to functional markers.

The current study investigated the timing errors of the HTC Vive combined with UE4 and

SteamVR. In the first experiment, we assessed the precision and accuracy of stimulus presenta-

tions. In the second experiment, we explored the limitations of UE4’s build-in timing proce-

dures for reaction time measurements resulting in variable and inaccurate reaction time

measures that are inappropriate for a wide range of reaction time experiments. Further, a

newly developed method and its benchmarking results will be presented. This new method

allows precise and accurate reaction time measurements with UE4 and SteamVR.

In the following, in order to increase readability, we will always refer to UE4, although, if

not stated differently, it always refers to the combination of UE4, SteamVR, and the HTC

Vive.

General methods

Unreal engine settings

We aimed to keep almost all default settings of UE4 in this study. However, due to the high

rendering demands of VR, it is generally recommended to adjust some settings to optimize

UE4’s VR rendering.

First, we changed the rendering technique from the default Deferred Renderer to the For-

ward Renderer. Forward rendering is generally the preferable rendering method for VR since

it usually improves performance and allows better anti-aliasing methods than deferred render-

ing. Forward rendering allows using multisample anti-aliasing (MSAA) that increases sharp-

ness and leads to better visuals [24,32]. Additionally, we enabled Instanced Stereo rendering.

By default, the geometry has to be drawn twice for VR applications as compared to non-VR

rendering, once for the left eye and once for the right eye, which essentially doubles the num-

ber of draw calls, i.e., the rendering information that is send from the central processing unit

(CPU) to the graphics processing unit (GPU). With Instanced Stereo rendering, the geometry

has to be drawn only once and is then projected to the right-eye view and left-eye view of the

geometry. This procedure halves the number of draw calls and thereby saves a substantial

amount of CPU time.

All tests described in this paper were conducted with Unreal Engine 4.21.2 with the config-

uration described above.
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SteamVR settings

In all experiments, we disabled supersampling anti-aliasing (SSAA) by setting the render reso-

lution of the HTC Vive to 100%. SSAA works by rendering a scene with a higher resolution

than the one displayed and then averages neighboring samples to create the image [33]. SSAA

is often used for VR rendering to reduce aliasing and improve visual quality.

Additionally, we disabled “Motion Smoothing” for all experiments. Motion Smoothing is a

method to stabilize the frame rate when an application starts to drop frames. As soon as the

frame rate decreases below the HMD’s refresh rate (90 frames per second (FPS) for the HTC

Vive), SteamVR reduces the frame rate by half and instead extrapolates every second frame

based on the last two presented frames [34]. However, while this method is helpful for the

common usage of VR (e.g., gaming) to provide smoothly running VR experiences, it would

corrupt all the timing precision and accuracy within a scientific experiment. Thus, it is recom-

mended to disable this option whenever precise timing is required or when the timing of

events (e.g., reaction times) needs to be determined precisely. However, besides Motion

Smoothing another technique helps to smooth out dropped frames called “Asynchronous

Reprojection”. Like Motion Smoothing, Asynchronous Reprojection reduces the number of

rendered frames by half. However, instead of extrapolating frames, it repeats the previous

frame but reorients it based on the user’s latest head rotation [35]. Since Asynchronous Repro-

jection cannot be disabled, a VR experiment should always be optimized about hard- and soft-

ware to ensure stable frame timing.

All tests described in this paper were conducted with SteamVR 1.2.10 with the configura-

tion described above.

Experiment 1

The aim of Experiment 1 was to test the precision and accuracy of visual stimulus presenta-

tions using UE4. The goal was to assess potential discrepancies between the stimulus timing

defined by the researcher and the actual stimulus timing on the display. Please note, stimulus

duration errors are observed even in software tools that, in contrast to UE4, are especially

designed for behavioral experiments [20].

Material and methods

Tests were performed using the Black Box Toolkit v2 (BBTK) to test the timing precision and

accuracy of simple black and white transitions with predefined durations. The BBTK is spe-

cially designed for benchmarking these type of tests [36]. We tested three different conditions

to determine the precision and accuracy of UE4’s stimulus timing under different rendering

workloads. Furthermore, we ran every test on two different Windows computers to compare

the timing precision and accuracy on systems with different hardware specifications.

Apparatus. All tests were conducted on two different desktop computers with Windows

10 as the operating system. The specifications of Computer 1) were Intel i7-8700, 32 GB DDR4

RAM, and an Nvidia GTX 1080 graphics card, and of Computer 2) Intel i7-7700K, 32 GB

DDR4 RAM, and an Nvidia GTX 1080Ti graphics card. The tested VR System was the HTC

Vive (1080 x 1200 pixels per eye).

General procedure. We used a well-established procedure to test the timing of visual

stimulus presentations for PC [37–39]. For each test, a photo-sensor connected to the BBTK

was attached to the middle of the HTC Vive’s left lens. The photo-sensor was used to measure

the stimulus timing under all conditions with a sampling resolution of 0.25 ms. Stimuli were

filled-in squares repeatedly alternating their contrast from black to white. Contrast reversals

were programmed to occur after durations of 11.111, 33.333, 66.666, 100, 200, 500, and 1000
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ms (i.e., 1, 3, 6, 9, 18, 45, and 90 display refreshes at 90 Hz). All stimulus durations were

defined in terms of the frames or ticks.

The BBTK was controlled with a second computer that was independent of the presentation

computer to prevent interference of the stimulus delivery process and the measurements

(Fig 1).

Each stimulus duration was tested in a single series with a duration of 10 minutes and

hence allowed evaluating the stability of UE4’s timing behavior over long durations. Further-

more, three different conditions were introduced, in which the rendering workload was sys-

tematically varied (Fig 2).

To test whether UE4 is generally able to provide sufficient timing precision and accuracy of

visual stimulus presentations while the rendering workload is low, a first condition was intro-

duced, which is from now on referred to as Simple. In this condition, we created an empty and

completely black virtual environment that only consisted of a single square that was presented

Fig 1. Presentation and measurement setup.

https://doi.org/10.1371/journal.pone.0231152.g001

Fig 2. Stimulus conditions. Please note, the brightness of the illustrations was increased and does not represent the actual brightness

presented.

https://doi.org/10.1371/journal.pone.0231152.g002
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centrally of the left eye’s image. The square’s brightness alternated between black and white

with the durations mentioned above.

This procedure allowed us to determine UE4’s timing precision and accuracy of visual stim-

ulus presentations with a minimal rendering workload and assured that presentation times

were unaffected by possible performance constraints.

A second condition, further referred to as Complex-Static, aimed to evaluate the stimulus

timing precision and accuracy with a high rendering workload. In a typical VR experiment, sti-

muli are not displayed in isolation but are embedded in a complex virtual environment.

The stimulus material in this condition still consisted of simple black and white transitions.

In contrast to the Simple condition, the stimulus square was embedded in a virtual

environment.

We used the Realistic Rendering sample project of UE4 as a virtual environment consisting

of a highly realistic and detailed rendered living room [40] (S1 Fig).

A third condition Complex Moving aimed to evaluate the stimulus timing precision and

accuracy while the movement of a user was simulated. We used the same virtual environment

as in the Complex Static condition, but of a single static viewpoint, the first-person camera was

placed in the center of the environment. The first-person camera was programmed to rotate

around the yaw axis with a constant rate of 30˚ per second. This was done to simulate the

user’s head movements. Additionally, to provide a fixed location of the square relative to the

camera, we attached the stimulus square to the camera. Apart from these adjustments, the gen-

eral procedure was identical as in the other conditions.

The displays of the HMD are relatively small, so the photo-sensor could not be directly

placed at the stimulus location to detect light from the stimulus square exclusively. Instead, it

always included some parts of the surrounding background. Hence, for the Complex-Static
and Complex-Moving conditions, it was necessary to calibrate the photo-sensor’s sensitivity to

ensure that the photo-sensor was driven only by the stimulus square and not by the environ-

ment’s light.

Calibration consisted of two steps. First, we adjusted the threshold to set the activation

point of the BBTK’s photo-sensor to the highest possible value that still detected the white

stimulus. In a second step, we adjusted the illumination of the environment. We first replaced

the default post-processing of the environment with a custom post-processing. Post-process-

ing describes techniques that change and add visual elements to a rendered scene after the ren-

dering has been completed. This procedure allowed changing the luminance within the scene

globally via a single setting, i.e., changing the light exposure, a post-processing effect that

changes the overall brightness of a scene. For the calibration, we increased the light exposure

until the environment’s light activated the photo-sensor and then reduced it again until the

photo-sensor was not activated by it anymore. This procedure ensured a proper illumination

of the environment while ruling out any interference between the environment’s light and the

photo-sensor’s light measurements.

Results

For each series, the mean durations of a single stimulus cycle (black and white stimulus inter-

val), as well as the standard deviation and the overall longest and shortest measured durations

were computed and reported for all tested stimulus durations. Furthermore, the mean dura-

tion of the white stimulus intervals was calculated. However, due to the low persistence dis-

plays, the display changed regularly between black and white even during the white stimulus

intervals. Accordingly, the BBTK measured constant changes between black and white during

white stimulus intervals. Hence, we defined the duration for the white stimulus interval as the
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time from the first white frame lighting up until the end of the last frame lightning up in that

white stimulus interval.

Further, since the low persistence displays only light up for about 2 ms at the end of each

display refresh, the white stimulus intervals started with a blank period during which the dis-

play was still black. Hence, the BBTK’s photo detector was not able to separate the actual black

stimulus interval from this first blank period of the white stimulus intervals first frame.

Accordingly, the measured white stimulus interval durations are expected to be shorter than

the expected stimulus duration by the duration of one frame’s blank period, i.e., about 9 ms.

The overall variability of the stimulus intervals was consistently within the range of BBTK’s

sampling rate of 0.25 ms. However, the measured stimulus durations steadily exceeded the

expected, i.e., programmed, stimulus duration. Further, the difference between expected and

measured durations appeared to be linearly correlated with the expected stimulus duration.

This result was confirmed by a simple linear regression between the expected and measured

durations of the stimulus cycles (F(1,5) = 3.62 x 1016, p< 0.05), with an R2 of 1.

Since the stimulus timing was defined in terms of ticks, the most parsimonious explanation

for the difference in stimulus durations was that the true frame rate was lower than the expected

90 FPS. Hence, for all measured stimulus durations, the corresponding frame rate was deter-

mined as 89.53 FPS, which was consistent for all tested stimulus durations and computers.

A potential explanation for the lower frame rate could be performance problems affecting

the frame rates. However, we systematically varied the rendering workload between conditions

and any effect of performance problems on the frame rate should be reflected in different

frame rates between conditions.

To test for potential performance problems between conditions, a two factorial Anova with

the factors Condition (Simple, Complex-Static, Complex-Moving) and Computer (Computer

1, Computer 2) was performed. The ANOVA revealed no significant main effect for Condition
(F(1,2) = 0.001, p = 0.999) indicating no difference between the FPS in the Simple (M = 89.528,

SD = 0.370), Complex-Static (M = 89.528, SD = 0.370), and Complex-Moving (M = 89.528,

SD = 0.370) conditions. In fact, the values observed in the different conditions were identical

up to the fifth decimal place.

Furthermore, potential performance problems should be pronounced differently on the

two different computer systems. However, the main effect Computer between Computer 1
(M = 89.529, SD = 0.370) and Computer 2 (M = 89.527, SD = 0.370) was not significant (F(1,1)

= 1.160, p = 0.281). There was also no significant interaction between Condition x Computer (F

(1,2) = 0.001, p = 0.999).

Besides, to exclude that the reduced frame rate (89.53 Hz vs. 90 Hz) observed was due to

particularities of HMD tested, all tests of the Simple condition were repeated with an additional

HTC Vive system on Computer 1. The mean results of these tests are presented in the support-

ing information (see S6 Table—S7 Table). The mean frame rate of 89.53 FPS was confirmed

with this setup and a one factorial ANOVA with the Factor HMD (HMD 1, HMD 2) resulted

in a non-significant difference of the mean FPS between HMD 1 (M = 89.529, SD = 0.370) and

HMD 2 (M = 89.529, SD = 0.370); (F(1,1) = 0.000, p = 0.99).

Table 1 shows the results of the whole set of measurements for the three conditions and two

computers. The individual results of the three conditions and both computers separately can

be found in the supporting information (see S1 Table–S5 Table).

Discussion

Experiment 1 aimed to determine Unreal Engine’s timing precision and accuracy for stimulus

presentations. Stimulus timing was measured under different rendering workloads. The results
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revealed that Unreal Engine in combination with the HTC Vive and SteamVR was able to

achieve precise and accurate stimulus timings. Timing precision and accuracy were stable even

with a high rendering workload. Furthermore, timing precision and accuracy remained stable

when the user’s head movements were simulated.

The HMD’s empirical frame rate was determined as 89.53 FPS, slightly differing from the

specifications given in the HTC Vive manual. Importantly, the frame rate was stable across dif-

ferent rendering workloads and when tested in combination with different computers, indicat-

ing that the observed frame rate was device-specific and not an artifact resulting from

potential performance problems. Moreover, additional tests with a second HTC Vive system

replicated this finding hence confirming that the reduced frame rate was not the results of a

defective HMD.

The results suggest that the true refresh rate of the HTC Vive is 89.53 Hz rather than 90 Hz,

at least when used in combination with UE4 running on a Windows 10 platform. Different

frame rates may arise when using different software packages. Future research needs to investi-

gate whether these findings hold for different rendering engines and operating systems.

Furthermore, the results of the present study emphasize that when using HMDs such as the

HTC Vive, for precise stimulus timing, researchers need to take into account the peculiarities

of low persistence displays with the so-called global update. In these displays, every frame starts

with a blank period in which the displays stay black. Only after this blank period, the displays

illuminate and the image appears. Therefore, black and white flickering stimuli as used in the

present experiment involve longer black than white periods. Consequently, studies that rely on

exact stimulus timing should consider this difference, when specifying stimulus durations.

Overall, we conclude that UE4, together with SteamVR and the HTC Vive, can present sti-

muli with precise and accurate stimulus durations.

Experiment 2

Introduction

Cognitive Neuroscience requires a mapping of internal neural states and cognitive processes.

A prerequisite to successfully relate both is to infer a cognitive system’s current state, which

can only be done from behavior. Response times and differences in reaction times are one of

the most important behavioral measures available to infer cognitive processes. Hence, a reli-

able and precise determination of participants’ responses is essential for cognitive neurosci-

ence since it allows inferring the mental processes to be related to neural events.

Table 1. Combined results across all conditions and computers (in ms).

expected duration mean sd min max mean duration white

2000 2010.58 0.116 2010.50 2010.75 996.05

1000 1005.29 0.091 1005.25 1005.50 493.41

400 402.12 0.125 402.00 402.25 191.82

200 201.06 0.105 201.00 201.25 91.29

133.33 134.04 0.090 134.00 134.25 57.78

66.66 67.02 0.067 67.00 67.25 24.27

22.22 22.34 0.120 22.25 22.50 1.93

The first column represents the expected duration for the black and white stimulus cycles. The last column represents the measured durations of the white stimulus

intervals.

https://doi.org/10.1371/journal.pone.0231152.t001
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Furthermore, in order to relate functional data and ongoing cognitive processes, it is vital

to accurately determine the points in time when specific sensory, cognitive, or motor events

occur. For instance, studies dealing with time-sensitive functional measures, such as EEG, usu-

ally utilize the onset of a stimulus or the response time as markers to synchronize with a func-

tional measure.

However, game engines such as UE4 are not designed for this kind of tasks and hence do

not provide the necessary timing procedures allowing precise and accurate time measure-

ments. For instance, precise reaction time measurements require that button events are regis-

tered in parallel to the stimulus presentation. UE4 registers button events only once per frame

resulting in uncertainties in the range of one frame duration.

Furthermore, as described above, the actual presentation of stimuli is controlled by a VR

runtime software such as SteamVR rather than by UE4 itself, which makes it impossible to

accurately measure the onset time of a stimulus with UE4’s build-in timing procedures.

Therefore, the aim of Experiment 2 was to determine the precision and accuracy of time

measurements with UE4 and thereby to investigate the limitations of UE4’s build-in timing

procedures. Additionally, the precision and accuracy of reaction time measurements of Psy-

choPy and Presentation, two experimental software packages commonly used in cognitive

neuroscience, were collected and compared against the results obtained with UE4.

Material and methods

All the settings of UE4 and SteamVR in Experiment 2 were identical to those used in Experi-

ment 1.

Again, the BBTK was used to determine the precision and accuracy of time measurements,

in particular, the precision of reaction time measurements. The BBTK’s photo-sensor was

used to measure the onset of a stimulus on the display, and a 1000 Hz USB response device,

connected to the BBTK and the stimulus computer, was set to elicit a response when the

photo-sensor signaled the onset of a stimulus (Fig 3). The BBTK software allowed generating

response schedules in which a sequence of response times, as well as corresponding response

durations (i.e., the duration of a button press) for a number of trials, was defined. This proce-

dure allowed the BBTK to simulate a realistic reaction time pattern. The sequence of reaction

times was obtained from a previously acquired data set collected in a behavioral experiment.

We used a well-established procedure to test the precision and accuracy of reaction time

measurements [20,36,41]. Again, simple black and white transitions were used as visual sti-

muli. However, in contrast to Experiment 1, in which the black and white transitions were

restricted to a square in the middle of the display, in Experiment 2, the black and white transi-

tions involved the entire display. The latter was done because the tests involving PsychoPy and

Presentation were conducted using an LCD monitor. As previously mentioned, in contrast to

the HTC Vive’s globally illuminated display, on LCD monitors the image is built up line-wise

from top to bottom causing varying measurement errors depending on the position of the

stimulus on the screen. Stimulus onsets were measured at the uppermost position in the left

corner of the monitor to minimize hardware-related measurement errors when testing Psy-

choPy or Presentation. Furthermore, since LCD monitors have different and often inferior

temporal properties as compared to OLEDs [42], the Samsung SyncMaster 2233 was used,

which has previously been shown to provide sufficiently precise timing for vision research

[43]. The tests of PsychoPy (v1.90.3) and Presentation (v20.3 02.25.19) were conducted with a

refresh rate of 60 Hz.

In Experiment 2, the white stimulus was defined as the target stimulus eliciting a response

by the BBTK. The target stimulus remained on the display until a response was given.
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Following the response, the stimulus turned black for 1 second and turned white again until

the following response was given (Fig 4). This procedure allowed to compare the true reaction

Fig 3. BBTK setup of the reaction time measurements.

https://doi.org/10.1371/journal.pone.0231152.g003

Fig 4. Example of one response schedule (left) and reaction time task of Experiment 2 (right).

https://doi.org/10.1371/journal.pone.0231152.g004

PLOS ONE Stimulus timing and reaction times with Unreal Engine and SteamVR

PLOS ONE | https://doi.org/10.1371/journal.pone.0231152 April 8, 2020 11 / 24

https://doi.org/10.1371/journal.pone.0231152.g003
https://doi.org/10.1371/journal.pone.0231152.g004
https://doi.org/10.1371/journal.pone.0231152


times as generated by the BBTK with the reaction times recorded by the stimulus software and

to determine the reaction time errors as well as its variability.

All three software packages were tested in five runs of 200 trials each. For each of the five

runs, a different response time schedule was applied. In order to represent realistic reaction

time distributions, we assigned reaction times of human participants measured in a previously

acquired dataset [44]. The reaction times of the first 200 trials of five randomly selected partici-

pants were used to generate five response time schedules (Fig 4). The response duration was

kept constant and was set to 100 ms in all trials. For each software package, the same response

time schedules and testing procedures were used.

All tests were conducted on a Windows 10 platform. The specification of the computer was

an Intel i7-8700 CPU, 32 GB DDR4 RAM, with an Nvidia GTX 1080 graphics card.

Results

The mean results for the three tested software packages are presented in Table 2. Both Psy-

choPy and Presentation showed comparable and only small overall reaction time errors

that led to a mean overestimation of the reaction times of approximately 4 ms. Furthermore,

the variability of the reaction time errors was comparably small in both PsychoPy and

Presentation.

In contrast, UE4 showed substantial errors, with highly variable reaction time measure-

ments with a mean measurement error of +55 ms and variability in an error range of 12 ms.

Two-sample Welch t-tests were conducted to compare the mean error of UE4 with each stan-

dard software package. The comparison of UE4 (M = 55.073, SD = 3.326) and Presentation

(M = 3.964, SD = 0.345) resulted in significant different mean errors t(1020) = 483.33,

p< 0.05). Similarly, the comparison between UE4 and PsychoPy (M = 4.337, SD = 0.483) was

significant t(1041) = 477.36, p< 0.05). Additionally, F-tests resulted in significant differences

of the variance between UE4 and Presentation (F(1,999) = 93.103, p< 0.05) as well as between

UE4 and PsychoPy (F(1,999) = 47.344, p< 0.05).

Discussion

Experiment 2 aimed to quantify the precision and accuracy of reaction time measurements of

UE4 and SteamVR in combination with the HTC Vive VR system. The tests illustrate the limi-

tations of the build-in timing procedures of UE4. To obtain an estimate of the precision and

accuracy provided by established software toolboxes for neuroscientific experiments in a non-

VR context, we applied the same testing procedure to Presentation and PsychoPy. While both

Presentation and PsychoPy provided precise and accurate reaction time measurements, reac-

tions times measured with UE4’s build-in timing procedures were highly variable with a high

mean measurement error.

The variability of the reaction time measurements can be accounted for by the fact that but-

ton events in UE4 are not registered in parallel. Instead, response events are only recorded

once per frame, hence resulting in an error range of one frame duration.

Table 2. Overview of measurement errors, standard deviation, minimum and maximum error for each software

package (in ms).

Software Mean error SD Min Max

Presentation 3.964 0.345 3.00 5.00

PsychoPy 4.337 0.483 3.00 6.00

UE4 55.073 3.326 49.00 61.00

https://doi.org/10.1371/journal.pone.0231152.t002
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In the tests reported above, stimulus onset times were determined after the command to

change the stimulus color from black to white. The high overall mean error illustrates a delay

between the moment the software executes the command to show a stimulus and the actual

stimulus presentation time. This delay stems from several processing steps preceding the actual

stimulus presentation, including a transfer of control over the stimulus presentation from UE4

to SteamVR.

However, these results were not surprising since these are known difficulties, and different

frameworks have been suggested to simplify data collection for behavioral experiments [45,46]

and to integrate and synchronize multiple data streams from different hardware devices, such

as EEG or eye-tracking [14,16,47,48].

One framework mainly focused on the precision of reaction time measurements in combi-

nation with Unity and the HTC Vive [15]. In this study, the authors used an Arduino, a pro-

grammable microcontroller, to measure response times independently of Unity and with a

sampling rate that is not limited by the refresh rate of the display. The benchmarking results

illustrated that they were able to measure response times with a precision (standard deviation)

of about 2.5 ms. Additionally, it was suggested that installing a photo-sensor in the HTC Vive

could further improve time measurements. A small photo-sensor could measure the onset of a

small peripheral stimulus appearing simultaneously with the target-stimulus. This additional

stimulus could be registered directly with the Arduino.

Another recent study introduced the Unified Suite for Experiments (USE), a combination

of soft- and hardware tools for the creation of experiments using Unity [14]. USE comes with a

custom designed SyncBox, that is again based on an Arduino and allows to synchronize different

data streams. A photo-sensor is used to measure the onset of an additional, peripheral stimulus

that is presented simultaneously with the target. Benchmarking results demonstrated that the

method was able to determine the stimulus onset with high precision for shorter durations.

Instead, over a longer duration, the authors observed nonsystematic changes in accuracy. How-

ever, the authors provide pre-processing tools to account for these timing errors and to provide

millisecond accurate stimulus onset measurements. Unfortunately, USE was not tested on

HDMs directly. Instead, tests were performed on a computer monitor. Installing a photo-sensor

in an HMD is technically challenging, as the photo-sensor needs to be small enough not to cause

any discomfort to the participant. Nevertheless, even when small enough, the photo-sensor

would be noticeable to the participant. Furthermore, this approach includes another peripheral

flash stimulus that is correlated with the target. This additional stimulus could potentially con-

found some experiments, such as the second stimulus could distract from the target stimulus.

Therefore, in the next section, we will present a new software-based method that allows cir-

cumventing these limitations and measuring accurate and precise reaction times with UE4

and SteamVR.

A new method for reaction time measurements with Unreal Engine

and SteamVR

Aims of the proposed method

The impact of VR on neuroscientific studies will critically depend on how easily VR experi-

ments can be implemented and how precise control of stimulus delivery and response acquisi-

tion will be. Promising and important frameworks that aim to simplify the creation and

control of VR experiments with game engines [e.g., 44, 45] are available already or are cur-

rently under development. However, so far, the progress with time-critical measurements,

such as reaction times, is still insufficient and requires technically challenging setups, including

additional hardware.
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Here we aimed to develop a method for reaction time measurements that can provide pre-

cise and accurate measurements entirely on a software basis, which makes the need for addi-

tional hardware and complicated technical setups obsolete.

Although our method was developed mainly for UE4 and SteamVR, our aim was to ensure

that the underlying principles are compatible with different game engines and the Oculus VR

runtime.

However, our goal was not to develop a ready-to-use toolbox, as there are already promis-

ing toolboxes currently being developed [e.g., 45,48]. Instead, we aimed to develop and test

our method as a proof-of-principle to provide a framework that can be integrated into other

toolboxes.

Method

The concept of our method is based on separating reaction time measurements from UE4 by

outsourcing the measurement procedure into a background application. Hence, our method

follows the same idea as the ioHub of PsychoPy. In order to provide, e.g., framerate indepen-

dent response times, the ioHub monitors response events in parallel of the PsychoPy main

process by running a separate process in the background [26].

In the first section, we will describe how to obtain frame rate independent measures of

response times.

In the second section, we will describe how this procedure can be extended to also obtain

accurate measures of stimulus onsets.

In the third section, we will provide timing benchmarks of the proposed method.

Measuring frame rate independent response times. For the detection of responses, a

global low-level keyboard hook is used. The Microsoft Developer Network describes a hook as

“a point in the system message-handling mechanism where an application can install a subrou-

tine to monitor the message traffic in the system and process certain types of messages before

they reach the target window procedure.”[49]. This procedure allows to intercept the keyboard

message before Unreal receives the message and thus allows to process button input with a

high sampling rate and independently of the displays frame rate (Fig 5). In particular, this

Fig 5. Illustration of the response time logging procedure.

https://doi.org/10.1371/journal.pone.0231152.g005
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procedure allowed us to increase the sampling rate of the input processing from 90 Hz to the

hardware limit of the response pad of 1000 Hz.

Furthermore, to determine the reaction time, i.e., the time between stimulus onset and key-

board response, an exact determination of when a stimulus appears on the screen is necessary

in addition to the exact time of a keyboard event. Therefore, it is mandatory to establish an

interface that allows synchronizing our background application with UE4. For this purpose, a

trigger signal (onset-trigger) is sent from UE4 to the background application, marking the

time point when a stimulus is presented by using Event Objects. Event Objects can be used to

exchange signals between threads or processes, indicating that a particular event has occurred

[50]. As soon as the function that initiates UE4 to present the target stimulus, the onset-trigger

signal is sent to our background application determining the time of a stimulus’ onset. The

background application then registers the time, and the keyboard hook is activated. Once a

response is given, the response time is logged, and the hook is stopped until the next onset-

trigger is received from UE4.

We, therefore, ran another series of tests to assess whether this method reduces the variabil-

ity of the measurement error previously observed. Again, five runs of 200 trials each, with the

same response schedules used in Experiment 2 were tested.

The results demonstrated that our background application effectively reduced the variabil-

ity of the response time errors down to a range of 2 ms. Conversely, the mean response time

error was reduced by about half a frame duration to a mean error of 49 ms. A two-sample

Welch t-test resulted in a significant difference of the mean errors between UE4 (M = 55.073,

SD = 3.326) and UE4 + Hook (M = 49.030, SD = 0.381); t(1025) = 57.081, p< 0.05). A F-test

comparing the variances also resulted in a significant reduced variance when measurements

were conducted with the background application (F(1,999) = 76.166, p< 0.05).

The results are summarized in Table 3.

Measuring the stimulus onset. Accordingly, the variability of the reaction time errors

can effectively be reduced. However, the mean absolute response time error of 49 ms remained

relatively high compared to PsychoPy and Presentation. The remaining error indicated a delay

between the moment UE4 receives the command to show a stimulus and the time when the

stimulus appeared on the screen. A closer look at the rendering processes of UE4 and SteamVR

revealed the origin of this delay and allowed compensating for it.

3D real-time rendering is accomplished within a pipelined architecture called graphics

pipeline. Fig 6 coarsely depicts the conceptual stages for the graphics pipeline. The first stage

consists of the game simulation and rendering preparation. Before the scene can be rendered,

the system needs to determine the locations of objects to be rendered in the scene. The game

simulation accomplishes this task. The game simulation calculates all the logic and transforms,

i.e., the position, orientation, and scale of all objects in the scene, taking into account inputs by

the user, animations, physics simulation, and AI. The rendering preparation then determines

what is currently visible in the scene and creates a list of all the objects that need to be rendered

and passes this list to the GPU. These steps are mostly processed on the CPU and controlled

by UE4. The next stage is the actual geometry rendering, which is processed on the GPU. The

final stage before the frame gets visible on the displays is referred to as scan-out. Scan-out

Table 3. Comparison of the reaction time errors, standard deviation, the minimum and maximum error of UE4

together with the hook procedure and the previous results obtained with UE4 build-in timing functions (in ms).

Software Mean error SD Min Max

UE4 55.073 3.326 49.00 61.00

UE4 + Hook 49.030 0.381 48.00 50.00

https://doi.org/10.1371/journal.pone.0231152.t003
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describes the transfer of the image via HDMI, thereby loading it onto the displays. After scan-

out completion, the display panels illuminate, and the frame gets visible. The last two stages

are controlled by SteamVR rather than UE4.

Calling the function to present a target stimulus in UE4 is just the first step of a whole cas-

cade of processes required to display a stimulus. Timestamping a stimulus event at the begin-

ning of this cascade (when the function to present the stimulus is called) is far too early,

resulting in the measurement errors observed in Experiment 2.

However, the graphics pipeline illustrates that it is not possible to measure the stimulus

onset directly via UE4. After submitting the rendering commands to the GPU, SteamVR deter-

mines when the frame is sent to the HMD. This is further complicated by the fact, that unlike

in rendering to a normal computer monitor, the scan-out has to be finished before the displays

light up and the stimulus is presented.

A more detailed illustration and description of the temporal characteristics of the graphics

pipeline is shown in the supporting information (S2 Fig and S1 Text).

Prediction. The method that allows determining the true stimulus onset time is based on

prediction. In particular, in order to predict the exact stimulus onset, a procedure can be

implemented that is based on SteamVR’s procedures to predict the user’s pose. One of the crit-

ical determinants to provide a compelling VR experience is to reduce the so-called Motion-

To-Photon latency. Motion-To-Photon latency describes the time that is required for a user’s

head movement to be fully reflected in the HMD. As described above, the system has to deter-

mine the layout of the scene before the scene can be rendered. One of the critical factors that

determine what is currently visible and what hence needs to be rendered is the user’s pose, i.e.,

the position and the orientation of the HMD. However, rendering takes time and induces

undesired latencies, thereby reducing the quality of the VR experience. Furthermore, latency is

one of the main drivers of motion sickness, a side effect that leads to symptoms like nausea,

dizziness, or vertigo [51].

SteamVR’s strategy to reduce the Motion-To-Photon latency is to predict the user’s pose,

giving the best estimate for the users’s pose when the frame is displayed on the headset, to com-

pensate for the latency in the system. To obtain an accurate prediction, the system needs to esti-

mate when the currently rendered frame will finally be displayed. All necessary functions to

predict when a frame will be displayed are provided within SteamVR’s application programming

interface (API) OpenVR. The proposed method is synchronized to SteamVR’s pose prediction

processes and further utilizes the provided functions to estimate the exact onset time of a frame.

SteamVR allows predicting when a frame will be presented. The prediction is purely tempo-

ral and does not contain any information on the frame’s content. In other words, it holds

Fig 6. Basic illustration of the graphics pipeline.

https://doi.org/10.1371/journal.pone.0231152.g006
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information on when a frame will be presented but not on what will be presented in that

frame. Trial specific information is only available through UE4. Hence, in order to be able to

predict the onset time of a specific event such as the stimulus onset, it is necessary to combine

information about the contents and temporal orders of trials from UE4 and the exact frame-

timing from SteamVR. Our background application can meet this challenge.

In particular, our background application first synchronizes with the trial-timing of UE4.

For this synchronization, UE4 sends a trigger-signal (onset-trigger) to the background applica-

tion whenever a frame marking the stimulus-onset is about to be submitted to the GPU, right

before the control over the rendering is handed over to SteamVR. Following the trigger-signal,

the background application stores a timestamp and fetches the necessary information about

the frame-timing from SteamVR, which is then used to predict the stimulus-onset (Fig 7).

A more detailed description of the processing steps involved in the prediction can be found

in the supporting information, S3 Fig and S2 Text.

Assumptions. Onset prediction is based on a few assumptions that have to be met. The

first assumption is that there are no additional frame buffers in the graphics pipeline. More-

over, the Experiment must run at a constant frame rate without dropped or reprojected frames

and without the use of Motion Smoothing. We recommend turning off Motion Smoothing

completely. However, Asynchronous Reprojection cannot be turned off, and to prevent frame

drops and reprojected frames, optimization of the experiment is mandatory. Yet, even with

such optimization, occasional performance problems cannot be ruled out entirely, and, hence,

should be controlled for. Therefore, a control mechanism was implemented to detect trials

affected by dropped or reprojected frames. The background application stores the number of

dropped or reprojected frames of every experimental trial and stores it into a log file. When-

ever a trial contains dropped or reprojected frames, the trial should be excluded from the anal-

ysis, since the validity of the measured reaction time cannot be guaranteed.

Fig 7. Illustration of the stimulus onset prediction.

https://doi.org/10.1371/journal.pone.0231152.g007
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Validation of the method

To ensure that the above-described method can measure precisely and accurately reaction

times, we repeated the testing procedure of Experiment 2. The three conditions of Experiment

1 were tested to determine the precision and accuracy of the method. Furthermore, the tests

were conducted on both computers, previously used in Experiment 1, to determine the reli-

ability of the method on different computer hardware. Overall, the method was tested in 6000

trials.

Results

The mean results for the three conditions are presented in Table 4. The mean measurement

error was 1.44 ms within a range of 2 ms across conditions and computers. Performance

remained good during all tests, as no dropped or reprojected frames were observed.

To test for differences in precision or accuracy between conditions or computers, a two

factorial ANOVA with the factors Condition [Simple (M = 1.446 ms, SD = 0.498), Complex-

Static (M = 1.443, SD = 0.497), Complex-Moving (M = 1.439, SD = 0.496)] and Computer
(Computer 1, Computer 2) was performed. The ANOVA revealed no significant main effects—

neither for the factor Condition (F(1,2) = 0.102, p = 0.903), nor for the factor Computer [Com-

puter 1 (M = 1.450 ms, SD = 0.4975) and Computer 2 (M = 1.435, SD = 0.4965); (F(1,1) = 1.305,

p = 0.253)]. The interaction between the factors Condition and Computer was also not signifi-

cant (F(1,2) = 0.345, p = 0.709). The individual results of both computers separately can be

found in the supporting information (see S8 Table and S9 Table).

Discussion

In Experiment 2, we observed highly variable reaction time measurements with inaccurate

stimulus onset measurements with Unreal Engine, SteamVR, and the HTC Vive VR system,

when using the built-in timing procedures.

Hence, we developed a new software-method to provide precise and accurate reaction time

measurements with Unreal Engine and SteamVR. Instead of measuring reaction times in

Unreal Engine directly, the measurement part was outsourced to a background application.

Timing benchmarks indicate that the method allows precise and accurate reaction time

measurements.

We made the source code of the background application and the project files as well as proj-

ect builds of the UE4 projects as tested in this experiment available on https://jugit.fz-juelich.

de/inm3/timingvr. The commits to the UE4 source code are available on https://github.com/

INM3FZJ/UnrealEngine/tree/TimingVR. However, note that the background application was

developed as a proof-of-principle rather than a ready-to-use toolbox, as the current implemen-

tation is limited in its functionality and was custom-made to fit the particular requirements of

the current research project.

Table 4. Overview of mean reaction time errors, standard deviation, minimum and maximum error for each con-

dition (in ms).

Condition Mean error SD Min Max

Simple 1.446 0.498 1.00 3.00

Complex-Static 1.443 0.497 1.00 2.00

Complex-Moving 1.439 0.496 1.00 2.00

Overall 1.442 0.497 1.00 3.00

https://doi.org/10.1371/journal.pone.0231152.t004
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General discussion

The study aimed to investigate the precision and accuracy in stimulus presentation durations

and reaction time measurements with Unreal Engine and SteamVR in combination with the

HTC Vive VR system.

In Experiment 1, we tested the precision and accuracy of stimulus presentations to deter-

mine potential discrepancies between the stimulus timing defined by the researcher and the

actual stimulus timing on the display. Our measurements revealed that the precise frame rate

of the HTC Vive slightly differs from the information given in the HTC Vive manual. The

HMD’s empirical frame rate was determined as 89.53 FPS rather than the indicated 90 FPS.

Importantly, the frame rate remained stable across conditions and in combination with differ-

ent computer hardware. The same frame rate was confirmed in a second HTC Vive system,

suggesting that the observed frame rate was device specific.

The results of Experiment 1 indicate that the stimulus timing was precise and accurate and

remained stable across different computer hardware configurations as well as across different

rendering workload requirements. UE4 in combination with SteamVR and the HTC Vive VR

system, therefore, appears to be suitable for time-critical visual stimulus presentations. The so-

called global-onset displays as used in the HTC Vive come with another significant advantage.

Due to the nature of how the image is updated in LCD and CRT monitors, the measurement

error of the stimulus onset is correlated with the position of the stimulus on the display. In

contrast, the displays of the HTC Vive load the entire image before the displays illuminate.

Consequently, when used in combination with precise time measurements, the global-onset

displays allow determining the onset of a stimulus without variable measurement errors due to

the stimulus position.

Experiment 2 aimed to investigate the limitations of the build-in timing procedures of UE4

for reaction time measurements. Timing benchmarks resulted in highly variable measurement

errors more than ten times higher as those obtained with Presentation and PsychoPy.

Hence, a new software-based method as a proof of principle was developed that allows precise

and accurate reaction time measurements with UE4 in combination with SteamVR. The new

method measures reaction times as independent as possible from the procedures implemented in

UE4. This is achieved by outsourcing the measurement procedure into a background application

that allows circumventing the limitations of UE4’s build-in timing procedures. In a first step, a

subroutine implemented into the background application monitors and processes keyboard mes-

sages before they reach UE4 and hence allows the collection of frame rate independent response

times. In a second step, a prediction algorithm, based on SteamVR’s pose prediction procedures,

was implemented to determine the true stimulus onset accurately. Timing benchmarks show that

the method accurately and precisely determines stimulus onsets and hence in combination with

veridical response time acquisition allows validly measuring reaction times.

The method presented here could help to simplify experimental procedures, as is allows to

measure stimulus events and response times without a need for complex hardware and sensor

setups.

Please note, the background application introduced here, is a proof-of-principle rather than

a ready-to-use toolbox. Our aim was to provide an example of a framework for reaction time

measurement that could be integrated into other toolboxes.

Although our method was tested with UE4, the underlying principles are, at least in princi-

ple, also applicable to other game engines such as Unity, as it is only necessary to provide a

trigger signal to synchronize the reaction time measurements of the background application

with the trial-timing of the game engine. Furthermore, to our understanding, the principles to

predict the stimulus-onset should also apply to the Oculus VR runtime software. Oculus uses a
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similar mechanism to predict the user’s pose as SteamVR, and the Oculus API also provides

the tools necessary to predict the onset time of a frame and hence could be used to predict the

stimulus onset. Additionally, the version of the background application here presented was

already designed to also support different HMD’s other than the HTC Vive.

Furthermore, the ability to accurately and precisely determine the time of stimulus events,

such as stimulus onset, and response times, is not only essential for reaction time measure-

ments. Instead, a precise recording of events within an experiment is mandatory for the analy-

sis of all time-sensitive functional measures, such as EEG or MEG. Therefore, the method

could also be extended, that stimulus and response events could be used as markers to syn-

chronize with time-sensitive functional measures.

However, it should be noted that the method heavily relies on game engines and VR run-

time software (here UE4 and SteamVR). Therefore, a limitation of this method is that future

updates of these third-party tools might cause compatibility problems or result in incorrect

measurements. Hence, it will be important to regularly validate the precision and accuracy of

time measurements with new software releases.

Furthermore, we developed and tested the method only for standard keyboard input and

did not include support for the HTC Vive’s motion controllers. Motions controllers are

increasingly used to investigate naturalistic behavior, as they allow to track the hand move-

ments of the participant [e.g., 52,53]. Future research needs to assess timing errors related to

motion controllers.

In sum, the HTC Vive, in combination with UE4 and our newly developed tool, constitutes

a precise and valuable instrument for neuroscientific research and visual sciences. Besides its

excellent performance, regarding accuracy and precision it allows taking advantage of all the

benefits that VR offers. When used in combination with precise research tools, VR has the

potential to implement new paradigms involving large fields of view of realistic and three-

dimensional environments. It allows integrating a variety of behavioral responses, increasing

the ecological validity of neuroscientific experiments, which may lead to more generalizable

and valid explanations regarding cognitive processes.
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